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Sound waves can be generated in a colloid by the application of an alternating 
electric field. In this paper we describe the method for calculating this and the related 
electro-acoustic phenomenon of electric fields generated by sound waves. As an 
illustzation of the procedure, we obtain formulae for these two effects for a 
suspension of spherical particles with thin double layers, in a parallel plate 
geometry. 

1. Introduction 
The effects to be described in this paper arise from the presence of electric charges 

on the suspended particles. In equilibrium such particles are surrounded by a diffuse 
cloud of ions carrying a total charge equal and opposite to that of the particle. This 
arrangement of surface charge and diffuse charge is known as a ‘double layer’. 

When sound waves pass through such a suspension, the density difference between 
the particles and the liquid leads to relative motion between the two phases. As a 
result macroscopic electric currents are set up and these lead to electric fields which 
alternate at  the sound-wave frequency. 

The idea that sound waves could generate electric fields in a suspension of charged 
particles arose in a paper by Debye (1933), in connection wit,h electrolyte solutions. 
The first measurements of the effect in suspensions were reported in 1938 by Rutgers, 
and in that year the first theoretical paper appeared (Hermans 1938). The paper 
dealt with the case of a suspension in which the particle radius is much smaller than 
the double layer thickness, a situation which occurs rarely in practice. In  1951 
Enderby studied the more important casc of a dilute suspension of weakly-charged 
spheres in an electrolyte of arbitrary double layer thickness, with the proviso that 
the ions have equal diffusivities. This restriction on the electrolyte was removed in 
the following year by Booth & Enderby (1952). 

Since that time there have been no theoretical developments in this area, 
presumably because of the difficulties associated with measuring pressure waves and 
electric fields in suspensions. Fortunately, these difficulties have now been overcome, 
and Matec Instruments are marketing a device which is capable of accurately 
measuring this effect in the megahertz range. The device is also capable of measuring 
the reverse effect of sound waves generated by electric fields, an effect which has 
hitherto escaped notice in the scientific literature. 

In this paper these two phenomena will be referred to as ‘electro-acoustic’ effects. 
The aim of the paper is to provide a theoretical basis €or relating both effects to the 
microstructure of a dilute suspension. 

In the following section we set out the microscopic differential equations which 
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must be solved in the calculation of these effects. These equations govern the 
distribution of ions, electrical potential, fluid velocity and pressure in the suspension. 
In $ 3  we set out the macroscopic constitutive equations required for the calculation 
of electro-acoustic effects and we derive a reciprocal relation between two of the 
coefficients in these expressions. This relation provides a link between the electric 
field generated by a sound wave, and the sound waves generated by an electric 
field. 

Formulae for these two effects are obtained in $94 and 5 for the case of a dilute 
suspension confined by two parallel plates. In  $4, which is concerned with electric 
fields generated by sound waves, we discuss Enderby’s work in more detail, pointing 
out a number of flaws in his solution of the electrokinetic equations and in his 
subsequent calculation of the electric field. 

The formulae derived in $3 4 and 5 both involve the electrophoretic mobility of the 
particles in an alternating electric field. In  $ 6 we calculate this mobility for particles 
with radii much greater than the double layer thickness. 

2. The electrokinetic equations 
The calculation of colloidal transport properties involves the solution of the 

‘electrokinetic equations ’, equations which describe the microscopic variations in 
the ion density, electrical potential, velocity and pressure in the suspension. The 
derivation of these equations is described in a number of papers (see for example 
O’Brien & White 1978, or Sherwood 1980), so only a brief outline will be given 
here. 

The electrical potential $ satisfies Poisson’s equation, which in SI units takes the 
form 

(2.1) 

in the liquid. Here e is the permittivity of the electrolyte, PZ] is the charge and n3 the 
number density of the j t h  species of ion, and N is the number of ionic species in the 
electrolyte. In  the absence of any chemical reactions each species satisfies the 

an. 3 = -v  

where& is t,he flux density of the j t h  ionic species. In a dilute electrolyte 

conservation equation 
.& 3 at 

+ n7 v, 

( 2 . 2 )  

( 2 . 3 )  

where o is the fluid velocity and Dj the ion diffusivity. The terms on the right-hand 
side represent the fluxes due to  Brownian motion, the local electric field, and 
convection with the flow respectively. 

The microscopic quantities of interest will presumably vary in the liquid on a 
lengthscale of the order of the particle radius. On the assumption that the 
wavelength of the sound wave is much greater than the particle radius, we will treat 
the fluid as incompressible in the calculation of these microscopic variations. Thus 
the equations of fluid motion take the form 

v - v = o ,  (2.4) 
N av  

at i=1 

and p- = -vp+ p V 2 v -  2 ezj ni V$. ( 2 . 5 )  
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As usual p, p and p are the fluid density, viscosity and pressure respectively. The 
convective inertia term has been omitted on the grounds that the particle Reynolds 
number is very small. The final term on the right-hand side represents the electrical 
body-force per unit volume. 

In a suspension in thermodynamic equilibrium, the ionic and fluid fluxes are 
identically zero. From (2 .3 )  it follows that the ion densities are given by the 
Boltzmann expression 

nj = n? exp ( - ezj  +/kT) ,  

for j = 1, ..., N ,  where the ny are constants. Substitution of these formulae in 
Poisson’s equation yields a differential equation for the equilibrium potential. From 
the equation it can be shown (Hunter 1981, chapter 2) that both the potential and 
the charge density in the electrolyte decay to zero exponentially with distance from 
an isolated particle, with a decay length K-’ given by 

(2.6) 

K-’ is the ‘double layer thickness’ referred to in the introduction. Beyond the double 
layer the potential is zero and n3 = ny. 

The form of the equilibrium potential and ion density fields around a spherical 
particle depend on the relative ion densities beyond the double layer, on Ka, (the ratio 
of particle radius to double layer thickness) and on the potential y a t  the particle 
surface. The latter quantity in turn depends on the nature of the particles and on the 
type and density of the ions beyond the double layer (Hunter 1981, chapter 2 .2 ) .  In  
this paper 5 will be treated as a given quantity. 

We now turn to the case of a suspension of uniform particles disturbed from 
equilibrium by the application of an alternating electric field or pressure gradient. 
As in nearly every other electrokinetic study it will be assumed here that the local 
ion densities and electric fields are only slightly perturbed from their equilibrium 
values. 

To calculate the electro-acoustic effects we will need to determine these 
perturbations over regions of the suspension which are large compared with particle 
spacing, but much smaller than the macroscopic lengthscales. Since the particles are 
uniform and the suspension is dilute the particle velocities will be uniform over such 
a region. For convenience we take a frame of reference moving with the particles. A 
superscript ‘0’ will be used to denote the equilibrium ion densities and potential, and 
the departures from those equilibrium values will be indicated by 6 prefix. 

Neglecting products of the various deviations from equilibrium in (2.1)-(2.3) and 
(2 .5 ) ,  we obtain the approximate forms 

where an e-iwt time dependence has been assumed for each of the perturbed 
quantities. The term involving the particle velocity U arises from our choice of the 
particles as the frame of reference. 
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Inside the particle, the velocity and ion densities are zero, and 6$ satisfies 
Laplace’s equation, assuming fixed charge density within the particle. At the particle 
surface, the boundary conditions are 

v = 0 ,  [eV 6$h * f i ]  = 0, 

and f ; . f i = O  ( j = 1 . 2  (..., N ) .  (2.8) 

where f i  is the unit outward normal and the square brackets denote the jump a t  the 
particle surface. 

At large distances x from the particle 

6 n j = 0 ,  v = - U ,  G$=-E.x, (2.9) 

and 6 p  = - V P  . x, (2.10) 

where E and V P  are the uniform electric field and pressure gradient far from the 
particles. For the dilute suspension which is of interest here, these quantities may be 
equated to the macroscopic electric field and pressure gradient. 

The mathematical specification of the problem is completed by the requirement 
that the net external force on any particle and its double layer is zero. This follows 
from the fact that in equilibrium, the net charge on the particle and double layer is 
zero. Since the net external force on this region is the charge x the field, we conclude 
that to O ( E ) ,  this force is zero. 

3. A useful reciprocal relation 
For the calculation of the electro-acoustic effects we will require formulae for the 

particle velocity U and the volume average current density (i) in the suspension 
where the local current density i is given by 

i = if + iwsV 6+. (3.1) 

For readers who are unfamiliar with the colloidal dielectric literature, this formulae 
for i will require some explanation. The term if represents the contribution from 
ionic fluxes in the electrolyte. The second term in (3.1) takes into account the current 
due to the alternating dipole moments of the dielectric molecules in the system. This 
current is given by 

- iwP, 

or equivalently by iw(e - eO) V 6$h. 

where P is the polarization vector and eo is the permittivity in vacuum. Although i t  
does not represent a true current, an extra term 

iwe, V 6$, 

is added to (3.1) to provide a current density with zero divergence, a result which 
may be verified by combining Poisson’s equation (2.1) with the ion conservation 
equation (2.2) (see O’Brien 1982, $ 3  for more details). 

Since the problem (2.7)-(2.10) for the various perturbation quantities is linear, 
these quantities must be linear functions of the applied field E and the pressure 
gradient V P .  For a statistically isotropic suspension it follows that the particle 
velocity and the average current density are related to  V P  and E by expressions of 
the form 

and 
U = CY. VP+,uu, E, 

(i) = /IVP+K*E. 
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The coefficient p E  which relates particle velocity to field strength is normally termed 
the electrophoretic mobility, while K* is called the complex conductivity. Our choice 
of symbols for these quantities is in accordance with standard notation. As yet there 
is no standard nomenclature and notation for the remaining coefiicients CI and p. 

In  the following sections it will be shown t'hat the coefficient /3 determines the 
electric field generated by a sound wave, while pE det.ermines the form of the sound 
waves generated by an alternating electric field. The calculation of /3 and pE involves 
the solution of the electrokinetic equations for zero electric field and zero macroscopic 
pressure gradient respectively. 

Fort'unately we only need to solve one of these problems, for p E  and p are linked 
by a reciprocal relation. 

This relation arises from an integral identity involving two solutions t,o the 
electrokinetic equations with different prescribed macroscopic pressure gradients 
and electric fields. The two solutions will be indicated by superscripts a and b 
respectively. 

Consider the integral 

(3.3) 

where A is a closed surface lying in the fluid, 6D = -sV 6$, and a is the usual 
hydrodynamic stress tensor. Applying the divergence theorem, and using the 
electrokinetic equations we obtain the volume integral 

where V is the volume enclosed by A ,  and e denot>es the rate of strain tensor. $' L. ince 
the volume integral is unaltered by an interchange of a and b ,  it follows that the 
surface int,egral (3.3) is similarly unaffected. 

This result' concerning the surface integral applies to any closed surface in the 
suspension, for since u and f j . ) . i  are zero at the particle surface: the contribut'ion to 
(3.3) from a particle surface is given by 

j A p  i w 6 p 6 D b -  6.  

By appling t>he divergence theorem and using t'he fact that 6D-).i and 6$ are 
continuous across the part>icle surface we once a'gain obtain a volume integral which 
is unaffected by an int,ercharige of a and b. 

It is convenient to choose A to be a 'macroscopic surface', that is a surface with 
radii of curvature which are everywhere much greater than the particle radius ; since 
we are treating the fluid as incompressible, we must also add t>he proviso that' d be 
much smaller than the sound wavelength. 

The quantities 6nj, u,  6D and the deviatoric part of the stress tensor will fluctuate 
with position around spatially uniform mean values, while 6D and 6$ fluctuate 
about mean values V P  x and -Em x respectively. 

On expressing each of the quantities in (3.3) as the sum of t'heir mean and 
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fluctuating parts, and dividing by the enclosed volume V ,  we obtain integrals 
involving products of averages, and product's of fluctuating quantities. For example. 
the contribution to (3.3) from the SyP6Db t'erm becomes 

- E" - x ( 6 D b )  * f i  d d  + (S$l.'* 6Db') . fi  rL1. (3.4) 

where the dashes denote the fluctuating quantities. In  deriving this result we have 
used the fact that  since the surface A is macroscopic, any int'egral over A can be 
written in terms of surface averages. This is why the angle brackets appear in the 
second integral in (3.4). and why products of average and fluctuating quantities do 
not appear, for the average of the fluctuating quantities is zero. 

Since the fluctuations are statistically homogeneous functions of position the 
quantities (6Db)  and (S$"'. SDb') in (3.4) are uniform. As t'he surface A increases thc 
first term in (3.4) begins to dominate, thanks to tjhe E".x  t'erm. On dividing (3.4) by 
the volume enclosed by A and formally letting that volume become infinite, we 
obtain 

Applying similar arguments to the other components of the integral (3.3) we find that 
tjhe integral, divided by the volume of A tends to 

s, s, 

- E" * (SDb).  

- (ti*). (VPa - iwpl7") + E" - (ib). 
Since (3.3) is unaffected by an exchange of a and p ,  we see that the expression (3.4) 

is equal to 

Thus in the case when VP" = 0 and Eb = 0, we find 

- ( v " ) .  (VPb - iwpUb) + E b .  (i"). 

( v b )  - (iwp U") + E". ( i b )  = - ( v" )  * (VPb  - iwpUb). (3.5) 

By using the second of the formulae (3.2) we can express ( i b )  in terms of ,8. To find 
the required reciprocal relation we must,also express ( v " )  in terms of p E .  To this end, 
we begin by noting that since the net electrical force on the suspension enclosed by 
A is zero, we have 

JA a*fidA = -iw p(u+ U)dV-iw (p+Ap) UdV, 

where V, is the fluid volume and V, is the particle volume enclosed by A ,  and p+Ap 
is the particle density. On dividing both sides of the above expression by I', we find, 
in the limit of infinite I.' that  

L JLFD 

- V P  = -iwp((v)+ U)-iw@Ap U,  (3.6) 

where 4 is the particle volume fraction. 

the a and ,B problems, and combining with (3.5) we get 
On writing ( v )  in terms of V P  and U with the aid of the above relation for both 

Combining this result with the formulae (3.2) for U" and ( i b )  we obtain the required 
result, viz. 
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The above argument can be applied to any suspension in which the particles move 
with uniform velocity without any rotation. Thus it is valid for a concentrated 
suspension of spheres in a cubic array and for a dilute suspension of spheroids with 
uniform [-potential. 

4. Electric fields generated by sound waves 

conservation equation it can be shown that 
By combining the macroscopic version of Poisson’s equation with the charge 

O - ( i >  = 0,  

(see O’Brien 1982, $3). Replacing (i) by the second of the constitutive formulae 
(3.2), and using the reciprocal relation (3.7) we obtain a differential equation for the 
field E generated by a sound wave, viz. 

Since the quantity on the right-hand side of this expression involves the particle 
volume fraction, we may obtain E correct to O($) by solving this equation with P and 
K* replaced by the values for a pure liquid with ion densities ny. 

Thus the first step in the calculation of the electric fields involves the determination 
of the pressure waves that would be set up if the pure solvent were subjected to the 
same boundary conditions as the suspension. 

The mathematical problem for E is completed by the addition of the equation 

and appropriate boundary 
One obvious solution to 

W x E = O ,  

conditions. 
these equations is 

This is the solution corresponding to zero current throughout the suspension, which 
applies in the case when 

on the boundaries. For other boundary conditions i t  is necessary to superpose a 
solution to Laplace’s equation. 

As an illustration of the calculation of this electro-acoustic effect, consider the case 
of a suspension enclosed between two infinite parallel plates. From the solution of the 
sound wave equations for a pure liquid in this geometry, we find 

( i ) . n  = 0,  (4.3) 

where c is the speed of sound and L is the distance between the plates. x represents 
the distance from the fixed plate, and Vo is the transverse velocity of the other 
plate. 

Although the suspension is a conductor there will be no current flow unless the 
plates are wired together to complete the circuit. If this is not the case, the boundary 
condition (4.3) applies, and the field between the plates is given by (4.3). 
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With the aid of the above expression for P we therefore find that the potential 
difference A~ between the plates is given by 

iq5 A p  cV,, ,uE (1 - cos w L / c )  
A$ = 

K” sin ( w L / c )  ’ 

Clearly, the effect is most pronounced at the resonant frequencies, where sin ( w L / c )  
is zero. Unfortunately our formula, which neglects viscous and nonlinear forms, is 
not valid a t  these frequencies. 

Enderby’s (1951) calculation of the electric field was based on the observation that 
the distortion of the double layer caused by the sound wave gives rise to an electric 
dipole field a t  some distance from the particle. He obtained the macroscopic field by 
summing the dipole ficlds produced by all the particles in the suspension. 
Unfortunately, this sum is non-absolutely convergent, that is, the value obtained for 
an infinite suspension depends on the order in which the particles are summed. 
Enderby chose to sum over the particles lying in thin slabs perpendicular to  the 
direction of wave propagation. This led to the result 

E = N , S ,  (4.5) 

where N ,  is the particle number density, and S ,  which is proportional to the dipole 
moment, is obtained from the far field form 

at large distances r from the particle. 
Enderby’s result can also be derived directly from the formula (DeLacey & White 

1982) 
(i) = K * ( E - N , S ) ,  

relating macroscopic current to particle dipole moment. By putting (i) = 0 we 
recover Enderby’s formula, without the need for evaluating a non-convergent 
integral. Thus although Enderby’s method was wrong in principle, it led to the right 
result. 

Since the formulae (4.2) and (4.5) both apply to the zero-current case, we may 
equate the two expressions and thereby obtain 

This relation would enable us to determine p E  from Enderby’s formula for S ,  were 
it not for the fact that Enderby’s result is incorrect, owing to two errors in the 
derivation: to begin with, he assumed (equation (4.5)) that the field inside the 
particle is uneffected by the applied field. Although this assumption is valid for a 
conducting particle, the surface charge balance condition (equation (3.14)) is not, for 
it neglects the current from within the particle. Furthermore, the quantity /3, which 
appears in Enderby’s dipole moment expression, is incorrectly given in (4.7) as a real 
quantity. This cannot be so, for it would mean that the ionic diffusivities do not 
affect the phase of the dipole moment, a result a t  variance with our understanding 
of double layer dynamics (see e.g. $ 6  of O’Brien 1986). Booth & Enderby made the 
same errors in their 195% study of this problem. 

The corrertion of these errors, and the extension to other types of particles with 
low charge will form the basis of a subsequent paper. 
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5. Sound waves generated by electric fields 

pressure field is O(4 )  and (4.1) simply reduces to 
This calculation is less straightforward than the previous one, for in this case the 

V * E  = 0. (5.1) 

Although this equation serves for the determination of the macroscopic field, it 
provides no information about the pressure or velocity fields. To obtain this 
information we must turn to the macroscopic equations of motion. 

Since the net electrical force on each particle and double layer is zero, the 
macroscopic version of Newton's second law reduces to a balance between the inertia 
and the hydrodynamic forces, viz. 

iw(p0) b = V P .  ( 5 . 2 )  

Here (p " )  is the equilibrium volume-average density and v is the macroscopic 
momentum per unit mass of suspension. In  deriving this result we have used the fact 
that the pressurc forces dominatc the viscous forces on the macroscopic scale. This 
can be seen by the following argument : the viscous stresses in the neighbourhood of 
a particle are O( ,dJ /a ) ,  and the nett viscous stress per unit volume is O($pU/aA), 
where A is the wavelength. The velocity ij will presumably be O($U) ,  so the ratio of 
viscous forces to inertia forces is O(v/aAw).  For a 1 MHz sound wave in water with 
a particle radius of 0.1 pm this ratio is approximately low3. 

As is usual in sound-wave studies, we assume that the flow is macroscopically 
isentropic. In  a pure liquid this implies that  the density is a function of the local 
pressure only. In a suspension, however, the picture is more complicated, for the 
density also depends on the particle and bulk ionic concentrations. Fortunately, 
howcvcr, these variations in concentration are not significant in this case. This 
follows from the fact that  E has zero divergence ; from the expression (3.2) for U we 
t'hen find that v .u=  0, 
and hence the particle concentration in the bulk of the fluid is not affected by the 
electric field ; similar arguments apply to the ionic concentrations. 

Thus the macroscopic mass conservation equation takes the familiar form 

i w P  
C2 
-- - ( P O )  V * u, (5.3) 

where c, the speed of sound in the suspension is given by 

the derivative being taken with the entropy and the particle and ion concentrations 
held fixed. 

The boundary condition which accompanies (5.2) and (5.3) is derived from the 
mass conservation principle, applied to a slab-shaped volume adjacent to the 
boundary. If the thickness of the slab is much smaller than h (but much greater than 
the particle radius), we may trcat the encloscd suspension as incompressible. For a 
rigid boundary, we therefore obtain the boundary condition 

(v).A = 0, (5.4) 



80 R. W .  O’Brien 

a t  the boundary. This does not imply that V - f i  is also zero, for if the electric field has 
a component normal to the boundary, U-f i  will be non-zero at the boundary, and 
thus if the particle density is different from that of the fluid there will be a normal 
momentum flux at the boundary. 

The formula for this flux follows from the definition of U, namely 

By using the fact that  the momentum density in the particles is ( p + A p )  U ,  we 
find 

Combining with (5.4) we obtain the boundary condition 

where we have used the fact v is O(#) in replacing ( p )  by p, and in neglecting the 
pressure term in the formula (3.2) for U .  

Hence the driving term for the sound waves appears in the boundary condition, 
rather than the differential equations ( 5 . 2 )  and ( 5 . 3 ) .  This boundary condition can 
also be derived by another argument which, although less direct, sheds more light on 
the mechanism for sound-wave generation. The starting point for this alternative 
derivation can be found in $ 1.7 of Lighthill’s (1978) book on waves in fluids. In  that 
section it is shown that an incompressible compact body radiates a dipole pressure 
field, where the dipole strength is given by 

F + p V U ,  

where F is the hydrodynamic force which the body exerts on the fluid and V is the 
volume of the body. In  our problem the force Fmus t  be supplemented by the electric 
force which the double layer ions exert on the fluid. As mentioned at the end of $2,  
the latter force is equal and opposite to the electric force on the particle. Hence by 
Newton’s second law, the dipole strength of the particle and double laycr is given 

A p V U .  

With the aid of the first of the constitutive equations (3.2) we can approximate this 
expression by 

iw AppE E, 

a result obtained by neglecting the O(#) pressure gradient term. The pressure a t  any 
point in the liquid can be written as a sum of dipole contributions together with a 
surface integral involving ( v ) - f i  and p on the boundary of the suspension. The dipole 
sum can be approximated by a volume integral which in turn can be expressed as an 
integral involving sources spread over the macroscopic boundary of the suspension. 
The resulting expression is equivalent to a Green function formulation for the 
pressure in the case when the velocity satisfies the boundary condition ( 5 . 5 ) .  Thus the 
momentum flux at the boundaries arises from summing the dipole fields of each of 
the particles in the suspension. 

For the parallel plate geometry described in the previous section we find, from 
(5.1), that the electric field acts perpendicular to the plates and has uniform 
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where is the applied potential difference between the plates, (We are here 
neglecting ‘electrode polarization ’ the drop in potential caused by the build-up of 
charge around the plates. This is usually a valid assumption if the frequency of the 
applied field is more than a few kilohertz.) 

From the solution to equations (5.2) and (5.3) with boundary conditions (5.5) at  
x = 0 and L,  we find that the pressure Po, on the plate a t  x = 0 is given by 

Po = icAp$EOpu, l-cos- sin-. ( wcL)y ucL 

Comparing this result with the formula (4.3) for the potential difference A@ induced 
by the motion of the boundary, we obtain 

Since the conductivity of the background electrolyte K* increases with electrolyte 
concentration, we see from the above result that a t  high concentrations the pressure 
Po is the approprate variable to measure, while a t  low electrolyte concentrations the 
potential difference A$ should be measured. XJnfortunately, this reciprocal relation 
appears to  be limited to  the parallel plate geometry. 

6. Calculating pE for a thin double layer system 
The formulae (4.4) and (5.6) for the electro-acoustic effects involve the 

electrophoretic mobility pE. In  this section we will calculate pE for a particle with 
a radius much greater than the double layer thickness K-’. 

The calculation involves the solution of the electrokinetic equations for an isolated 
particle in a uniform ambient field with zero pressure gradient. This is a problem 
which has been studied in connection with the dielectric response of a dilute 
suspension of spheres. For thin double layer systems, two asymptotic analyses have 
emerged from these studies, one valid for w / K 2 D  + 1 ,  and the other for wa2/D % 1 ,  
where a is the particle radius. 

The w / K 2 D  + 1 analysis was pioneered by Dukhin & Shilov (1974), who showed 
that in this limit the thin double layer is in a local equilibrium with the neighbouring 
electrolyte. With the aid of this observation, Dukhin was able to obtain a local 
solution of the electrokinetic equations in the double layer. This solution provided 
boundary conditions which were then used in the calculation of ion densities and 
electric potential beyond the double layer. In  1984 Hinch et al. extended the analysis 
to include the calculation of the electrophoretic mobility for wa2/v + 1, where, as 
usual, 1’ denotes kinematic viscosity. Since ~a must also be large, this analysis is 
restricted to very small particles a t  high electrolyte concentrations. 

In  this section we will be concerned with the other asymptotic limit, wa2/D 9 1. 
For a frequency of 1 MHz, and a typical ion diffusivity of lop5 cma s-’, this 
restriction holds if a B 0.01 pm; a condition which is frequently satisfied in 
practice. 

The physical significance of the restriction wa2/D 9 1 can best be appreciated by 
studying the form of the ion conservation equations in (2.7). Beyond the double 
layer, the gradients in nf and are zero, and thus in this region the equations are 
diffusion-like. Since there are no source terms, the disturbances in ion density must 
diffuse out from the double layer. Thus if wa2/L) + 1, these disturbances will be 
confined to a layer of thickness (Dlw);  beyond the double layer. 
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In  calculating the local flow in this layer and the underlying double layer we can 
neglect the inertia term in the equation of motion (2.7) provided v/B + 1, and 
w/K2v  < 1 ;  the first condition is always satisfied in practice, while the second is 
satisfied at  a frequency of 1 MHz if the electrolyte concentration 9 lop6 M, as is 
usually the case. 

The problem of calculating the local flow is further simplified by the fact that a t  
these frequencies the electrical force term in the flow equation (3.7) involving the 
perturbation in ion density is negligible. To show that this is so, we must first 
estimate the magnitude of the charge density perturbations. Following O'Brien 
(1986) we apply the principle of charge conservation to the portion of the double 
layer lying over one half of the particle surface. The applied field sweeps charge into 
this region a t  a rate O(aKsE) where Ks is the 'surface conductivity' of the double 
layer ~ the quantity which relates the local tangential current to the tangential field 
a t  the surface. The resulting variations in charge over the particle surface give rise 
to a back-field Eb which opposes the applied field in the double layer. For the 
important case of a particle whose dielectric constant is much smaller than that of 
the liquid, the normal component of Eb beyond the double layer is given by 

1 60 Eb.n = -, 
€ 

where 6s is the change in the double layer charge per unit area. Thus Eb is 0(6a/s). 
This back field produces a tangential current out of the region of O(KSuE,), while the 
normal component causes a current of O(KWa2Eb) to flow out to the surrounding 
electrolyte where K" is the conductivity of the electrolyte beyond the double layer. 
On putting the net current flow equal to wa26a we find 

60 = h ~ € E / ( l + O ( ~ ) + O ( ~ ) ) .  OOa 

For most applications Ks/K"a is of order 1 or less, and ws/K" is O(u/K2D) which will 
also be typically of O(1) in the MHz range. Thus we may take 60 to be O(eE).  

By the usual lubrication theory type arguments it can be shown that the flow in 
the thin double layer is locally tangential to the surface. The electrical force 

N 

S. ezj6njW$0 
j=1 

due the change in ion density acts normal to the surface, and is balanced by 
normal pressure gradients. Thus tangential variations in this force will give rise to 
tangential pressure gradients. Assuming that the perturbations in charge density are 
spread fairly uniformly across the double layer, we find that the force term (6.1) is 
O(&K W@'), and thus the force gives rise to  a pressure difference of O(6m-5) across the 
thickness of the double layer. In  the tangential direction quantities vary on the 
lengthscale of the particle radius. Hence the ratio of the tangential pressure gradient 
to the other electric force component 

N 
C nj'ezjV6$, 
j-1 

is O(l/Ka), where wc have used the estimates sE for 60,  and C K ' ~  for 
N 

ezj njo, 
j=1 
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the equilibrium charge density in the double layer. Similarly, it can be shown that 
the tangential pressure gradients due to the component of V&,k normal to the surface 
are also negligible when compared with the tangential component of (6.2). 

Thus the equation of motion ( 2 . 7 )  reduces to 

(6.3) 

in the double layer, where V, is the tangential gradient operator, and x denotes 
distance from the surface. In this frequency regime the tangential applied field is 
approximately uniform across the double layer (O’Brien 1986). Integration of (6.3) 
therefore yields the result that  the velocity rises from zero a t  the particle surface to 
the limiting value 

gV, 6?+9 (6.4) 
P 

beyond the double layer. This expression is well known in colloid science, having 
been derived by Smoluchowski (see Hunter 1981, chapter 3) for a particle in a steady 
field, under the restriction that KS/K“a + 1. We now see that this result also applied 
to an alternating field, without the restriction on A’”. 

The calculation of the particle motion involves the solution of the equations of 
motion beyond the double layer, where there are no electrical forces, subject to the 
conditions that the velocity takes the uniform value -pE E far from the particle, and 
is given by (6.4) in the region beyond the double layer and close to the surface. The 
required mobility p E  is determined from the condition that the net electrical force on 
the particle and double layer is zero. 

Following the usual boundary-layer matching we shall take the ‘outer’ velocity 
field to be given by (6.4) at the particle surface, and use the zero-electric force 
constraint in the form 

[AD a - f i d ~  = -ioM, U ,  (6.5) 

where A ,  denotes the particle surface, M ,  is the particle mass, and Q is the 
hydrodynamic stress tensor, calculated using the outer solution. The required 
mobility ,uE is determined from the condition of zero electrical force on the particle 
and double layer. 

To complete the specification of the velocity boundary condition a t  the particle 
surface we require a formula for the potential 6~ in the electrolyte. Since the changes 
in ion density are confined to the neighbourhood of the particle surface, the potential 
satisfies Laplace’s equation beyond that region. By applying the charge conservation 
principle to a part of the double layer O’Brien (1986) obtained a boundary condition 
to be satisfied by the potential beyond the double layer. The solution to Laplace’s 
equation with this boundary condition is given by (O’Brien 1986, equation (4.2)), 

1 - iw‘ - (2h - iw’a,/e) 
where f =  Z ( 1 -  iw’) + (2h - iw’e,/e) ’ (6 .7)  
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Here d = we/h'", and h = Ks/h7a". The calculation of t'he re1at)ionship of K s  to the 
{-potential is discussed in the Appendix to O'Brien's paper; there it is shown that 

ny zf Di v' 2 3m.i exp ( - czi </2kT) 

h z  C 2; nyDj ("7) KiU 

j=1 

provided exp ( - ezi C;I2lcT) 9 1, 

(6.8) 

(6.9) 

where 

Here the subscript i refers to the counterion of highest charge, and 

m, = 2~(k!P)~/3pup~D,.  

If the condition (6.9) is not satisfied, an analytic formula for h can only be obtained 
in the case of a symmetric electrolyte. For other electrolytes, the evaluation of h 
requires the numerical solution of the problem for the equilibrium potential in the 
locally flat double layer. With the aid of the above formulae we can write the velocity 
(6.4) at the particle surface in terms of the non-dimensional surface conductivity A. 

The particle velocity U can be conveniently calculated with the aid of the 
reciprocal identity 

(v .a ' -v ' -a ) . l idA = 0, 

linking any two solutions (v ,  a) and (v ' ,  a') to the force-free linearized Navier-Stokes 
equations in the region enclosed by surface A .  In  this case we take v to bc the 
required velocity field, in the laboratory frame of reference, and v' to be the velocity 
field around an uncharged sphere of the same radius, which executes translational 
oscillations in a liquid at rest as a result of an external force FeP". We take the 
surface A to be composed of the particle surface A ,  and a large sphere, centred on 
the particle. As the radius of the large sphere tends to infinity, the integral over that  
surface approaches zero, and the above identity reduces to 

U * F =  ( v -  U)-a'ndA.  s,, 
On replacing v- U by the formula (6.4) and using (6.5), together with the expressions 
for F' and a' givcn in 3 21 of Landau & Lifshitz (1966) we obtain 

(6.10). 

where G ( a )  = ( l - ~ i a ( 3 + 2 A p / p ) / [ l + ( l + i ) ( ~ a ) t ] ) - l .  (6.11) 

In  figures 1 and 2 we show the variation of (pE( and argpE with frequency for a 
particle with K a  = 30, D / v  = 2 x pp/p = 2 and e,Je = 0, where pp and ep are the 
density and dielectric constant of the particle respectively ; these values apply 
approximately to a suspension of 0.3 pm radius dielectric. particles in 10F M KC'1 
solution. The curves in figure 1 represent the case of a particle with e</kT = 1. The 
particle charge is so small in this case that the changes in charge density due to the 
applied field do not significantly affect the field around the particle. Thus the flow in 
the double layer relative to the particle is in phase with the applied field, and the 
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phase difference in p E  arises entirely from the particle and fluid inertia. In  figure 2 
we show the frequency dependence of the mobility for a highly-charged particle, 
e { / W  = 6. In  this case the back field due to  the distorted double layer has a 
significant effect. Since this field lags the applied field, the net tangential field- 
which determines the relative flow in the double layer - leads the applied field. This 
is the reason why the phase angle is smaller than in the low-5 case. The back field is 
also responsible for the increase in mobility amplitude with frequency, for as the 
frequency increases, the back field, which opposes the motion, diminishes. 

Ideally, the results presented in this section should be compared with experiment, 
but to date no experiments on such suspensions have appeared in the literature. 
Hopefully this work will provide the stimulus for such an investigation. 



R. Hi. O’Brien 
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